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The SLR (Simple Linear Regression) Model Setup

1.

You have a dataset consisting of n observations of two variables (X, y):
{(x.¥)} i=12..n.

You believe that except for random noise in the data, there is a linear relationship between
the x’sand the y’s: 'y, ~ B, + £X; ... and are interested in estimating the unknown

parameters £, (they intercept) and S, (the slope).

If there was no noise in the data, then since vy, = 4, + B,x, for all observations, we could
easily determine 3, and ..} But typically, the relationship is not exactly linear in the
observed data.

Call your parameter estimates ,@0 and ,31, and your predicted y values y, = ﬁ’o + ,lei :

a. | will try to be consistent and always use g's for true parameter values... and ,é's for
estimates of the g's.

We call the difference between the observed y, and the predicted value ¥, = ,@0 + ,lei the

residual, U;: 0; =y, -¥, =Y, _(:‘go +/élxi)'

One measure of how well the predicteds fit the residuals =
actuals will be the SSRs, the Sum of the Squared actuals - p redicteds

Residuals: SSR=>"02=>"(y,~9,) -

a. We square the residuals so that positive and negative residuals won’t offset one another
when we add them up.

1 B, is just the slope of the line connecting any two datapoints, and 3, = Yy, — f3,X;, for any datapoint.
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7. Here’s an example (negative residuals for #1 and #2; positive residuals for #3 and #4):

intercept 0.3
slope 1
55Rs

id X i pred residual
1 0.19 0.44 0.49 (0.05)
2 0.29 0.41 0.59 (0.18)
3 0.41 0.81 0.71 0.10
4 0.54 0.92 0.84 0.08
id resid*2
1] 0.0025
2] 00338
3 0.0100
4]  0.0056
SSRs  0.0520

8. In this example, we have:
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a. pred(icteds) computed using an intercept = .03 and slope = 1... and SSR=.0520

b. In Ordinary Least Squares (OLS) regressions, the goal
is to find the coefficient values that minimize the sum OLS = min SSRs

of the squared residuals, or SSRs...
call the estimated coefficients least squares estimates.

9. Here are two more examples:
a. predl: intercept =-.07, slope = 2, and SSR=.0386 (solid line below)
b. pred2: intercept =.29, slope = 1, and SSR=.0507 (dashed line below)

c. Note that both predicted values are above data point #2 and below data point #3... and on
opposite sides of data points #1 and #3.

intercept -0.07 0.29 11
slope 2 1
predicteds !
id X y predl pred2
1] 0.19] 0.44 0.31 0.48] 0°
2] 0.29] 0.41 0.51 0.58
3[0.41) 0.81 0.75 0.7 0.8
4| 0.54] 0.92 1.01 0.83
0.7
residuals
1 0.13 0.08] 06
2 (0.10) (0.17)
3 0.06 011 4«
4 (0.09) 0.09
residuals"2 04
1 0.0169 0.0016
2 0.0100 | 0.0289| 3
3 0.0036 0.0121
4 0.0081 0.0081 0.2
SSRs
0.0386 0.0507

0.15

which is why we

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

@— pred1 pred2 o v
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10. Perhaps we can do better in terms of minimizing SSRs, but at the moment, the predl
coefficients do the best job of fitting the data, with SSR=.0386; pred2 is second best with
SSR =.0507, and pred in the first chart provides the poorest fit to the data, with SSR = .052.

11. Take Away: The fit of the predicteds to the actuals will vary as we change the intercept and
slope coefficients. The goal is to find the coefficient values that provide in some sense the
best fit. One way of measuring the fit for each set of coefficients is to look at SSRs the sum
of the squared residuals. The OLS coefficients will provide the best fit of predicteds to
actuals, in the sense of having the smallest possible SSR. And that's why we call the
estimation technique least squares... or more formally, Ordinary Least Squares.

OLS (Ordinary Least Squares) Estimation: FOCs and SOCs
12. OLS: Minimize Sum (of the) Squared Residuals (SSRs)

a. The challenge in Ordinary Least Squares is to find the slope coefficient (b,) and intercept
coefficient (b,) that together minimize Sum Squared Residuals (SSR), defined by:

SSR="(,)* =X (v, ~ (b, +bx)) .

b. To do this, and as you saw
in Getting Started 11, we'll
use First Order Conditions
(FOC:s) to identify least
squares coefficient
candidates, and Second
Order Conditions (SOCs)
to ensure that we have
indeed minimized SSRs.

c. Before turning to the math,
here's an example of SSR
contours for different
values of b0 and b1. In
the Figure, SSRs are ] ; ‘
minimized when b0 =0 k0
and bl=.5:
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13. OLS I: Working with standardized variables

a. Assume that the x's and y's have been standardized to have mean zero and variance one,
sothat x=y=0, S, =S5, =5 =5 =1,and S, =p, .

b. FOCs: Focus on the FOCs for our minimization problem:
minimize SSR =" (y; —(b, +byx ))2 with respect to (wrt) b, and b, .

i. FOC 1: Differentiating wrt b :

B~ 23 (4~ by, ~bx) = -2y + 20, + 25K =0, and 0 /(n-1)
0

OSSR

b, Vb

0°SSR
2
0

1. Checking a SOC:

=2n> 0, so we have a minimum at b, .

ii. Since X=y=0, by =y—bX =0 isour best estimate for the intercept parameter.?
iii. And so our minimization problem becomes:

minimize SSR =" (y, —bx )" wrt b.
iv. FOC 2: Differentiating SSR =" (y, —b,x ) wrt b;:

%Z‘szi(yi ~bx)=0. So Z(Xiyi):blzxiz!and bl=%
2

d SER =2) x? >0, so we do indeed have a minimum at b, .

0

1. Checking a SOC:

v. Since x and y are standardized, we have several equivalent expressions for the
estimated slope coefficient:

— 2 (xyi) _ [Z(Xiyi )]/(n—l) _ Sy —p
zxiz [zxiz]/(n_l) Sxx v

c. Accordingly, the predicted values generated by OLS with standardized variables are
defined by: y, = Py X - Now you know why it is sometimes said that OLS parameter

estimates capture the correlations between variables. And now you perhaps better
understand the results in gFlip01!

b/

2 The * indicates that the particular coefficient value minimizes SSRs.
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14. OLS II: ... more generally ...
a. Now, turn to the more general case in which the x's and y's have not been standardized.
b. Focusing on the FOCs for our minimization problem:

minimize SSR="(y, (b, +bx, ))2 with respect to (wrt) b, and b, .

I. FOC 1: Differentiating wrt b :

aSSR =-2> " (y; —by—bx) = —2ny + 2nb; + 2bnx =0, and so
aSSR

=0 b, =y-hbX
b, b =Y b

1. So as before, the intercept estimate will be equal to the mean of the y's less the
slope estimate times the mean of the
x's. You don’t yet know what the
intercept and slope estimates are...
but you know that for FOC 1 to be 0

satisfied, they (b, and b, ) have to .
. . . . FOC :b, =v—-bx
satisfy this relationship. o !

2. The following Figure is illustrative...
and assumes y >0and X >0. FOC
1 implies that the b, and b, that
minimize SSRs must lie on the
straight line defined by b, =y —bX.
To find the exact SSR minimizing b
values of b, and b, , we turn to FOC
2.

ii. Since SSR=Y"[y, —(b, +bx, )]2 and b, =y —bX, we now want to minimize
SSR= Y[y (Y-t +bx)] = [ (% -9)-bu(x~%)]  wrt by

iii. FOC 2: Differentiating wrt b :
dSi:_zZ $)[(v;-¥)-b(x-X)]=0. So

> (% —X) )=b > (X ~x)*,and b, = Z%(X)i()—(il) y).
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c. The SOCs are more complicated and will be skipped, but rest assured that they are
satisfied and the FOCs identify the global minimum of the SSRs. For some intuition: the
two second derivatives (wrt b, and wrt b, ) are both positive, suggesting that we may

indeed have identified a minimum with the FOCs:
8ZSSR
O

d? SSR

i. Differentiating FOC 1: =2n>0, and

=-2(-1)> (%, -%)*>0.

OLS and Sample Statistics : Interpreting the OLS coefficients
15. The OLS estimated coefficients

a. For the given sample, the OLS estimates of the unknown intercept and slope parameters
are:

5 - D% =X, —
' Z(x—x)

As previously mentioned, we use “hats” to denote estimates.

b. Since Z(Xi -X)=0, Z(Xi =Xy -Y) :Z(Xi -X)Y, _VZ(Xi -X) = Z(Xi =X)Y; -
as discussed in the Sample Statistics section of Getting Started Il. Accordingly, we have
an alternative expression for the estimated slope coefficient which will prove useful later:

ﬁA’ Z(X X)Y,
' Z(x—x)

c. /S, and the sample means

, and Bo = y_ﬂAlY

i. Since ,5’0 = 7—,31?, the estimated intercept is the sample mean of the y’s minus ,31
times the sample mean of the x’s.

ii. The estimate of the intercept assures that the average predicted value, ,30 + Bli, is the

same as the average observed value y, since g, + X = (7— ﬂli) +4X=Y
d. p, and the sample variances, covariance and correlation

I. If we divide the numerator and denominator of the ,Bl equation by (n-1), then using
the sample statistics notation from Getting Started Il, we have:

- S =X, -Y) [ =X -N]/(n-1) s,

2=t [ X=X In-Y) S,
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e.

ii. Accordingly, the OLS slope estimator is just the ratio of the sample covariance of x’s
and y’s and the sample variance of the x’s:

~ _ Sample Covariance(x, y)
! Sample Variance(x)

- : S
iii. Recall that the sample correlation is defined by: p,, :Si' where S, and S, are
X<y
the square roots of the respective sample variances.

iv. Since p, = Sy _ Sy S we have: —i—p 2
| Pn=ss, s, s, A v

x Yy XX X

And so once the slope coefficient is determined, the SSR minimizing intercept coefficient
follows from FOC 1:

B3y |eme
NFOC by =y-bx

S S, g
A=s_ Pos h

OLS/SLR Slope Estimate ~ Correlation: So the regression slope coefficient is the
product of the sample correlation between the x’s and y’s and the ratio of the two
estimated standard deviations:

Sample StdDev(y)

Sample StdDev(x)

,31 = Sample Correlation(x, y)

i. If the two sample standard deviations are the same then the estimated slope
coefficient will be the estimated correlation between the x’s and y’s. You saw this in
the first instance when we considered SLR models with standardized variables, with

S, =S, =1.
ii. Indeed it is not unusual to think of the OLS slope estimate ,31 as reflecting the

n S
correlation between the x's and y's. Since S, = p,, S—y the sign of the estimated slope

X

coefficient, ,Bl, is the same as the sign of the correlation between x and y, p,,
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(assuming that the ratio of standard deviations positive, which it always is unless one

of the standard deviations is zero).

,31: A Weighted Average of Slopes

16. The estimated slope coefficient is a weighted
average of slopes of lines joining the various

data points to the sample means (X,V): o
Iél:ZiWi|:((§:+;;:|:ZiWi slope; . o
a. This result holds because - N
D NI .
' (n-1S,, o
:Z_{(Xi—w}{(yﬁ—w} N
Lo-D3,. JL 5% S
:ziw{&‘ :z;}zziwi slope,, where *
slope, = ((i' _z; is the slope of the line connecting (x;,y,) to (X,Y), and
— (Xi _7)2 _ (Xi _7)2

RTINS Ay

b. By construction, the w, 's are non-negative weights, which sum to 1.

c. Accordingly, in the equation for [31, the slopes are weighted proportionally to (x, —X)?,

the square of the various x-distances from the x mean.

d. Inthis interpretation, note that the data points are not weighted equally (that would be

another estimator... but not OLS). Those that are farther away from X (in the x

dimension) get greater weight, and that weight increases with the square of the x-distance

from X .
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e. Here's an example: The blue dots are the data points; the horizontal and vertical black
lines are at the sample means; the blue lines are the lines connecting the data points to the
sample means; and the think black line shows the predicted Brozek values given the slope
and intercept estimates.

i. Note that in the weighted averaging of slopes, one data point, (125.75, 1.90), gets two
thirds of the weight, and when combined with (223, 27.50), those two data points get
95% of the weight. So even though there are four data points, the slope estimate is
being largely driven by just two of the data points.

OLS Slope Estimate: Weighted Average of slopes

Means | 184.688 | 19.900 |

Case wgt Brozek x-dist y-dist slope (x-dist)*2 wgt wgt'slope
172 125.75 1.90 58.94 ] 18.00| 0.31 3.473.63 | 67% 0.2050
36 191.75] 38.20 (7.06)] (18.30)] 2.59 49.88 1% 0.0250

10] 198.25] 12.00 (13.56)] 7.90 | (0.58) 183.94 4%| (0.0207)
205 223] 27.50 (38.31)] (7.60)] 0.20 1,467.85| 28% 0.0563

5,175.30 100%  0.2655

Brozek y = 0.2655x - 29.138

45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00

100 120 140 160 180 200 220 240
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OLS Predictions, Residuals and SRFs
17. OLS coefficient estimates will generate predicted values, ¥'s, and residuals, G's:
a. Predicted values: For given x;, the predicted y, value given the estimated coefficients

is: y, = BO + ,lei (recall again that we use “hats” for predicted or estimated values).

b. Sample Regression Function (SRF): The predicted values from the estimated equation,
y = 3, + B,x, comprise the Sample Regression Function.

c. Residuals: And for the given predicted y, value, the residual, U., is as above the
difference between the actual and predicted values: G, =y, -y, =, —(,30 +/§’1xi )
18. To illustrate predicteds (from the SRF) and residuals, we turn to the bodyfat dataset and a
regression of Brozek on BMI, with an SRF defined by: brozek = —20.41+1.55 bmi .

a. The following chart on the left illustrates the relationship between the SRF (predicteds)
and the actuals (the actual (x;, y; ) data points).

60
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L
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°
°

40

Residuals

20
10
)
K
° N
.
)
.

-20
|

T T T T
20 30 40 50
bmi

T T T T
20 30 40 50

Fitted values ® brozek

b. And on the right you see a graph of the residuals from the analysis.

i. You shouldn't be surprised to see the SRF slice through the dataset... since we
estimated the coefficients by minimizing SSRs.

ii. And you should not be surprised to see the residuals evenly dispersed above and
below 0, since by construction, and as you'll see below, the residuals will have sample
mean 0.

iii. But what about that rogue residual in the lower right corner of the Figure? Need to
check on that!

19. SRFs will depend on the actual sample used to estimate the slope and intercept parameters...
different samples will typically lead to different parameter estimates and accordingly,
different SRFs. But there are some consistent outcomes with SRFs:

10
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a. The SRF always passes through the sample means, (X,Y).
i. ,30 =y- ﬂ]i assures that the SRF passes through (X, y) since as previously
discussed, the value of the SRF at X is ,50 + ﬁli = (7 — ﬁli) + ﬁ’li =y
b. p,=p,: SampleCorrelation(predicteds, actuals) = SampleCorrelation(x’s, y's)

I. The sample correlation between the actuals and predicted values is the same as the
sample correlation between the actuals and the X’s: p, = p,, . Proof below.?

.. Properties of OLS/SLR Residuals

20. Recall that the residuals are defined by: 0. =y, -y, =, —(,30 +ﬂA1xi ) We have the
following properties of residuals:

21. Average residuals: The average residual is zero: EZ@ = 7—(,&0 +£’17) =0

n

22. Correlation I: The sample correlation between the x; 's and the U, 's is zero, since
D0 (x =0. Proof below.*

23. Correlation I1: The sample correlation pI'EdiCtEdS and residuals

between the predicted values (y; s) and
. o . are uncorrelated
the residuals (U, s) is zero. Proof below.

24. Decomposition: And so OLS essentially decomposes actual y, 's s into two uncorrelated
parts, predicteds and residuals: y; = ¥, +0; and p,; = 0. This result will prove useful later.

y;‘:.j}.i—l_u,\i pw_o

Sy

. p P . 2 .
,andsince S, =S . . = Syﬁo +BS,, = BS,, andsince S, = S, , we have:

3 Qj —
Since py; = Yo +x)

y=y
Syy _ ﬂlsyx — Syx =p
= W
SyS? Syﬂlsx Sysx

0 (x—=%)=>( .—A.)(x.—_):Z( .—(ﬁ0+ﬁlxi)(xi—7). Butsince /3, = ¥ — B,X, the last
expression is Z(y (V- BX+Bx ) ((Y. 7)—,31(&—7))(&—?)

=Sy, —¥) (% ~X)= B (x, —X)" =0 given the definition of B,

2 (0 -0)(9,-9)= 20 (5 -) -

Py =

Z( )(Xi — 7), which is zero (see previous proof).

11
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25. Since the predicted and residuals have zero covariance, the variance of their sum is the sum
of their variance: S, =Sy +S;;.

Var(actuals) = Var(predicteds) + Var(residuals)

26. Multiplying through by (n-1), we also have:
Z(Yi _7)2 ZZ(yi _7)2 +Zai2 )
since the mean of the predicted y's is the mean of the actuals, %Z . =V, and since the

. 1o : . :
residuals have mean O, —Zui =0. This result will prove especially useful later.
n

12
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Units of Measurement and Estimated Coefficients

27. It is of so tempting to see large estimated coefficients and to rejoice in thinking that you've
found a large effect... or to see a small estimated coefficient and to fall into the depths of
depression thinking that you've found no real effect at all. And in both cases, you would be
seriously in error... falling into the the trap of thinking that the magnitudes of the estimated
coefficients tell you something meaningful. They do not... as they are sensitive to units of

measurement. Customary Units of Measurement - Chart
28. If you change units of measurement
. . ! Length Weight C i Ti
you will change OLS estimated _ apacity ime .
coefficients... or put differently, you akadntai Rk —— —
can make the magnitudes of those 3ft=1yrd 200016 =1 ton -

.. 2pt=1gqt r=1day
coefficients as large or small as you 5280 fim 1 o 7 days=1wk
want just by changing units of ’ 8pt=1gl S2wk=1yr

12 mon=1yr
measurement 1,760 yrd =1 mi 4qt=1gal 365 days =1yr
Here's why:

29.

cups

cups

cups TN

cups

a. Consider the standard SLR model in which you've regressed y on x. You know from
above that the estimated OLS slope and intercept coefficients will be defined by:

S

XX

n Sxy Sy S — 5
ﬂ1= =pxys_and ﬂ0=y—ﬂlx.

b. Now suppose that you rescale x to create a new variable v, v= A4 x, where A4, >0 so that
you preserve the sign of the variable. For example:

cups
cups
cups

cups

1. Perhaps x was originally height measured in feet...
and now v is height measured in inches. Then 4, =12 , and

v=12X.

ii. Or maybe x was originally volume measured in
gallons... and now v is volume measured in quarts, so that
A, =4 ,and v =4x.

You get the idea.

c. This rescaling will impact the sample mean and standard deviation:
v=AXand S, =45S,.

d. Suppose you also rescale the y's as well: w= 4 y. This will similarly impact the mean

and standard deviation: W=4y and S, =4S, .

e. But recall that rescaling both the x's and the y's will not impact the sample correlations, so
that: p,, = p,, - This will proves to be an important feature.

13
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f. Now if you regress the rescaled variables on one another (you regress w on v), the new
OLS coefficient estimates will be defined by:

A.S A S A, -
Y Y- Yy L =24 and
AXSX ﬂ pxy l ﬂl

X X X

slope = p,, S_W = Py

\

_ I e oA
_cons=w—(slope)v=ﬂyy—(7yﬂljﬁxx=ﬁy(y— 1x)=/1y,30

30. Accordingly:

a. Changes in the units of measurement of the RHS x variable will proportionately impact
the estimated slope coefficient... and have no impact on the estimated intercept. Ina
sense, the estimated coefficient will unwind the rescaling of the variable. In the previous
examples:

i. feettoinches: x is 12 times larger, slope is 1/12" the size.... and slope*x is
unchanged

ii. gallons to quarts: X is 4 times larger, slope is 1/4" the size.... and slope*x is
unchanged

b. Changes in the units of measurement of the LHS y variable will proportionately impact
both the estimated slope and intercept coefficients.

c. And if you rescale both variables, the impacts on the estimated slope and intercept
coefficients will be some combination of the above..

31. To repeat: The magnitudes of the estimated coefficients will be dependent on the units of
measurement, and in that sense, will typically tell you little about the meaningfulness of the
estimated effect. There are exceptions, of course... but they are not the norm.

32. Or put differently: Don’t fall into the trap of thinking that the sizes/magnitudes of estimated
coefficients tell you anything useful, as they are driven in part by the units of measurement.
In contrast: the sign of slope coefficient (which does not change with rescaling) does tell you
the direction of the estimated effect. So pay attention to signs... but not so much to
magnitudes... unless you have specific reasons for thinking that the magnitudes are
meaningful.

33. But then, how do we assess meaningfulness?

14
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Economic Significance (Meaningfulness): Beta Regressions and Elasticities

34.

35.

36.

Once the unknown parameters have been estimated using OLS, the obvious question is:
What do those estimates tell you? Do they suggest that there is a meaningful relationship
between changes in the x's and predicted changes in the y's? Or maybe not? How do you
tell?

Later, we will address this question from a statistical perspective, using the tools of statistical
inference and the concept of statistical significance. But for now, we focus on a more
commonsensical approach to answering the question: How (economically) meaningful is
the estimated relationship? Do you want to brag about it to the world? Or will everyone just
laugh at you, and tell you that what you've estimated is trivial, and of little consequence?

Meaningfulness is definitely in the eye of the beholder. Nonetheless, there are some
systematic ways in which researchers tackle the question: Beta Regressions and Elasticities

Meaningfulness I: Beta Regressions

37.

38.

39.

40.

One way around the issue of sensitivity to units of measurement is to first standardize your
variables before you run your regression. By subtracting means and dividing by standard
deviations, you will transform your variables into variables with mean zero and unit
variances and standard deviations. More importantly, your standardized variables will be
insensitive to units of measurement... or put differently: changes in units of measurement
will have no impact on the standardized variables.

More formally:

. X — X
a. Create the z's by standardizing the x's: z, =—

X

b. Suppose you rescale the x's as above: v=A4Xx...sovV=4X and S, =4S, .

c. Then the standardize v's will be defined by: ViS_V = ﬂx)i_sﬂxx = XiS_ Xz,

X

\'

d. Changes in units of measurement will have no impact on the standardized variable...
standardization negates the impact of any change in units of measurement.

e. And so regressions run with standardized variables will be unaffected by changes in units
of measurement.

Beta regressions: With beta regressions, we just regress the standardized y on the
standardized x. As you saw earlier in the semester, the OLS estimated intercept will be zero,
since both standardized variables have mean zero, and the estimated slope coefficient will
just be the sample correlation between the x's and y's (which is unaffected by rescaling).

To run these in Stata, just add , beta to your reg command. Here's an example, working with
the bodyfat dataset:

15
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. corr Brozek BMI

| Brozek BMI

_____________ S
Brozek | 1.0000

BMI | 0.7280 1.0000

. reg Brozek BMI, beta

Source | SS df MS Number of obs = 252
————————————— o~ F(1, 250) = 281.89
Model | 7991.50988 1 7991.50988 Prob > F = 0.0000
Residual | 7087.50675 250 28.350027 R-squared = 0.5300
————————————— +------------—--------------—-————  Adj R-squared = 0.5281
Total | 15079.0166 251 60.0757635 Root MSE = 5.3245

Brozek | Coef Std. Err. t P>|t] Beta
_____________ e e
BMI | 1.546712 .0921238 16.79 0.000 .7279942

cons | -20.40508 2.367227 -8.62 0.000 .

41. The reported Coef.'s are the usual OLS coefficients from regressing y on x. The coefficients
for the Beta Regression are on the far right of the results table.... and as expected, the
estimated intercept is 0 and the estimated slope is just the sample correlation between Brozek
and BMI.

42. There are two interpretations of the estimated beta regression slope coefficient:

a. As mentioned above, the beta regression slope coefficient will be the sample correlation
between x and y, which is invariant with respect to changes in units of measurement.

b. The results above say that a one standard deviation increase in BMI is on average
associated with a .73 standard deviation increase in Brozek. So the beta regression slope
coefficient captures effects measured in standard deviation units. And those effects will
not vary with units of measurement.

43. Since the slope estimates in Beta regressions are correlations, they are bounded between -1
and +1... and we have a sense of their magnitude: closer to zero, not so meaningful... and
closer to -1 or +1, and we'd say that there was a meaningful relationship. For the .73
magnitude above, most would say that the estimated relationship was meaningful... and
surely no one would laugh at that claim. Though never forget that meaningfulness is in the
eye of the beholder.
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Meaningfulness I1: Elasticities

44. In economics and mathematics, we typically use derivatives to assess relationships between
changes in one variable, say, x, and changes in another, say y. But derivatives are sensitive
to units of measurement... and so to circumvent this problem, economists often turn to
elasticities, which provide a unit free measure of responsiveness (of the predicted y's to

changes in the x's):

O A
elasticity = O/Oﬂ

YoAX
percentage changes in x and percentage changes in the predicted values.

... the elasticity captures the estimated relationship between

45. Using the SRF to estimate relationships: § = ,30 + ﬁ’lx.

_ : : . . A~ d.oa
a. Derivative: The estimated average marginal relationship between x and y : v y=p.
X

Note that you can read the derivative right off the regression output (it's the estimated
slope coefficient, £,).
. - xd . ~X A A A
b. (Point) Elasticity: Td—y = B, — evaluated at (X,y) = (X, 5, + B,X), somewhere along
X y
the SRF.... Evaluate where? Your call!

i.  Where you evaluate the elasticity on the SRF is often arbitrary... but be sure to
evaluate the elasticity at some point on the SRF. You will typically get different
elasticities depending on where along the SRF you estimate the elasticity... but
maybe they don’t change much as you move along the SRF.

ii. We often evaluate the elasticity at the means (which are by definition in the middle

of the dataset): ,31%

1. Recall that the mean of the predicted values will be y ... and that the SRF passes
through (X, ¥) = (X, B, + X) .

46. You can use the margins command in Stata to generate the elasticities. Let's return to the
previous example and regress Brozek on BMI. To generate the elasticity, we first run the
regression, and then follow that with the margins command:

- reg Brozek BMI

Source | SS df MS Number of obs = 252
————————————— fo————————————————— - F(1, 250) = 281.89
Model | 7991.50988 1 7991.50988 Prob > F = 0.0000
Residual | 7087.50675 250 28.350027 R-squared = 0.5300
————————————— +----——-————-—---------------————  Adj R-squared = 0.5281
Total | 15079.0166 251 60.0757635 Root MSE = 5.3245

Brozek | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ e
BMI | 1.546712 -0921238 16.79 0.000 1.365275 1.72815

cons | -20.40508 2.367227 -8.62 0.000 -25.06733  -15.74283
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47.

48.

49.

. margins, eyex(_all) atmeans

Conditional marginal effects Number of obs = 252
Model VCE : OLS
Expression : Linear prediction, predict()
ey/ex w.r.t. - BMI
at : BMI = 25.4369 (mean)
Delta-method
ey/ex Std. Err. t P>]t] [95% Conf. Interval]

While you can evaluate the elasticity (eyex in the syntax) at different points, the atmeans
options will generate the elasticity at the means... which is 2.08. Most would say that an
elasticity of that magnitude (suggesting that a 10% increase in BMI s associated with a 21%
increase in predicted Brozek) is highly meaningful.

While there's no official border separating elasticities for meaningful effects from those that
are not so meaningful, I think it's fair to say that everyone agrees that elasticities above 1
(and even .5) in magnitude suggest a meaningful effect, and those below .05 might suggest a
not so meaningful estimated relationship. If I had to pick a zone of indifference, I'd say that
it might be in the neighborhood of .1 ... but this is clearly a judgement call.

Often elasticities are so small or so large, no one needs to worry about picking a dividing line
for meaningfulness. But unfortunately, that is not always the case... in which case
reasonable people may disagree.

Beta Regressions v. Elasticities:

50.

51.

In our bodyfat example, the beta regression and elasticities approaches both suggest that
there is a highly meaningful and positive relationship between BMI and Brozek. | should
warn you though that while these two approaches almost always lead to consistent
interpretations, that won’t always happen.

In that case, you can throw your hands in the air... or maybe just fall back on the eyeball and
laughability tests. Do your critics laugh at you when you claim to have found a meaningful
effect? Or maybe they agree with you, even though no one agrees on exactly how to define
meaningfulness.
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Examples in Excel and Stata

Let’s first do this in Excel.

Open the bodyfat dataset in Excel. Generate the x-y scatterplot of Brozek v. wgt, and “add
trendline”. You should see something like:

Case wgt Brozek
1 154.25 12.6
2| 173.25 6.9] ¢
3 154 24.6
4] 18475| 109| o
5| 184.25 27.8
6] 210.25 20.6]  ,,
7 181 19
8 176 128 .,
9 191 5.1
10| 198.25 12 .,
11) 186.25 7.5
12 216 8.5 10
13 180.5 20.5
14| 205.25 20.8 0
15 187.75 21.7
16| 162.75 20.5

Brozek y=0.1617x - 9.9952

50 250 300 350 400

Trendline fits a straight line to the data... and

that straight line is in fact generated by the OLS Excel Trendline = OLS/SLR

intercept and slope coefficients!

For Brozek and wgt, compute sample means, variances, standard deviations, as well as the
covariance and correlation, and apply the various formulae for the OLS slope and intercept
estimates. You should get something like:

StDevs

Means 178.924 18.938

Case wgt Brozek
1 154.25 12.6
2 173.25 6.9
3 154 24.6
4  184.75 10.9
5 184.25 27.8

Sample Variances Sample Cov Sample Corr Slope estimates
863.72 60.08 139.67 0.6132  Sxy/Sxx 0.1617
29.39 7.75 corr*(Sy/Sy) 0.1617
Sum Squares Sum Intercept estimate
216,794.40 15,079.02 35,057.55 Bbar-b1*wbar (9.9952)
wgt-wbar Brozek-Bbar  product
(24.67) (6.34) 156.40
(5.67) (12.04) 68.31
(24.92) 5.66 (141.11)
5.83 (8.04) (46.83)
5.33 8.86 47.19

So who knew? The Excel Trendline is generated by OLS!
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Running regressions in Excel

You can also run the OLS regression in Excel using Data/Data Analysis/Regression (you may
have to load the Data Analysis Tool-Pak (go to Options/Add-Ins):

Regression PR
Input
Input ¥ Range: SC85:3C5260 -
Input X Range: $B55:5B5260
La [] Constant is Zero
Data Analysis @Iéj "] Confidence Level: 95 %
Analysis Tools Output options _
Covariance Jr _) Qutput Range: 3
[n] iptive Statisti @ New Worksheet Ply:
i
F-Test Twa-5 le for Vari esiduals
Fou&:iergﬁal;;:-lsp s £ IR:| RdESidIUE|5 D Residual Plots
HiSt‘_:'gram = g;andard\zed Residuals |} Line}it Plots
Moving Average
Random Mumber Generation Normal Probability
Rank and Percentile [T] Mormal Probability Plots
Regression i
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.61316
R Square 0.37596
Adjusted R Square 0.37346
Standard Error 6.13511
Observations 252
ANOVA
df SS MS F Significance F
Regression 1 5,669.11 5,669.11 150.62 2.05905E-27
Residual 250 9,409.90 37.64
Total 251 15,079.02
Coefficients  Standard Error t Stat P-value Lower 95%  Upper 95%
Intercept (9.9952) 2.3891 (4.18) 3.97276E-05 (14.7004)  (5.2899)
wgt 0.1617 0.0132 12.27 = 2.05905E-27 0.1358 0.1877

Same OLS slope and intercept!
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Now for Stata.

. bcuse bodyfat

Contains data from http://fmwww.bc.edu/ec-p/data/wooldridge/bodyfat._dta

obs:
vars:
size:

variable name
Case

Brozek

wgt

Sorted by:

. reg Brozek wgt

Source

|
_____________ +
Model |
Residual |

+

|

. predict bhat
. scatter bhat

252
24
40,068
storage display value
type format label variable label
int %10.0g Case
double %10.0g 457/density - 414.2
double %10.0g weight (1bs)
SS df MS Number of obs = 252
—————————————————————————————————— F(1, 250) = 150.62
5669.11335 1 5669.11335 Prob > F = 0.0000
9409.90327 250 37.6396131 R-squared = 0.3760
—————————————————————————————————— Adj R-squared = 0.3735
15079.0166 251 60.0757635 Root MSE = 6.1351
Coef Std. Err t P>|t] [95% Conf. Interval]
.1617088 .0131765 12.27 0.000 -1357578 -1876598
-9.995151 2.389056 -4.18 0.000 -14.70039 -5.289908
Brozek wgt
Q |
o °
[}
o |
<
s [
o |
(s2]
o
N
=l
o -
T T T T T T
100 150 0 300 350

0 250
weight (Ibs)

® Fitted values

® 457/density - 414.2
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Use the summarize, correlation and display commands to generate the OLS slope and intercept
estimates:

. summ Brozek wgt

Variable | Obs Mean Std. Dev. Min Max
_____________ e e ——————— e e e e e
Brozek | 252 18.93849 7.750856 0 45.1

wgt | 252 178.9244 29.38916 118.5 363.15

. corr Brozek wgt, covar

Brozek | 60.0758
wgt | 139.672 863.723

slope coefficient 1: ratio of sample covariance to sample variance

. di 139.672 / 863.723
-16170925

intercept estimate:

. di 18.93849 - .16170925 * 178.9244
-9.9952405

. corr Brozek wgt

| Brozek wgt

_____________ S,
Brozek | 1.0000

wgt | 0.6132 1.0000

slope coefficient 2: (sample corr) (ratio of sample standard deviations)

. di 0.6132 * 7.750856 / 29.38916
-16172034

Verify that the correlation of Brozek with wgt is the same as the correlation of Brozek with bhat:

. corr Brozek bhat wgt

Brozek bhat wgt

0.6132  1.0000
0.6132 1.0000 1.0000

22



OLS/SLR Analytics: Estimating Parameters

Capture the residuals and verify that they are uncorrelated with the predicteds (bhats) and as

well with the explanatory variable (wgt)
. predict resids, res

. corr bhat wgt resids

| bhat wgt resids
_____________ R,
bhat | 1.0000
wgt | 1.0000 1.0000
resids | -0.0000 -0.0000 1.0000

Elasticity at the means.

Evaluate the elasticity associated with the estimated OLS coefficients:

. di .1617088*178.9244/ 18.93849
1.5277696

Or just run the margins command right after the reg c

. reg Brozek wgt
. margins, eyex(_all) atmeans

Conditional marginal effects

ommand

Number of obs =

252

Model VCE : OLS
Expression : Linear prediction, predict()
ey/ex w.r_t. - wgt
at > wgt = 178.9244 (me
| Delta-method
| ey/ex Std. Err. t
_____________ e e e e e e e e e
wgt | 1.527769 -1283313 11.90

an)
P>|t] [95% Conf.
0.000 1.275021

And how about a Beta Regression?

reg Brozek wgt, beta

Number of obs
F(1, 250)
Prob > F
R-squared
Adj R-squared
Root MSE

0.000

Source | SS df MS
_____________ e ———————_—_———
Model | 5669.11335 1 5669.11335
Residual | 9409.90327 250 37.6396131
_____________ e e
Total | 15079.0166 251 60.0757635

Brozek Coef. Std. Err t

wgt .1617088 .0131765 12.27

cons -9.995151 2.389056 -4.18

0.000
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As you saw before, the beta regression slope coefficient is just the correlation between Brozek
and wgt. The following shows that the Beta regression is as advertised... it's what you get when
you first standardize your variables before running OLS. You'll see that you can use use egen
and the std(.) function to easily standardize your variables:

. egen zBrozek=std(Brozek)
. egen zwgt=std(wgt)
. reg zBrozek zwgt

Source | SS df MS Number of obs = 252
————————————— Fom e F(1, 250) = 150.62
Model | 94.3660642 1 94.3660642 Prob > F = 0.0000
Residual | 156.633936 250 .626535743 R-squared = 0.3760
————————————— +----------—---------------—-—-—-———— Adj R-squared = 0.3735
Total | 251 251 .999999999 Root MSE = .79154
zBrozek | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ S
zwgt | -6131561 -0499616 12.27 0.000 -5147569 .7115553

cons | -1.39e-09 -0498623 -0.00 1.000 -.0982038 -0982038

Finally: About that sensitivity to scale... Here are some regression results, with height in feet,
inches, meters and centimeters (notice the use of eststo and esttab to compile the results).

. gen hgt_ft = hgt/12

- gen hgt_cm hgt_m*100
. reg Brozek hgt_ft
. eststo
. reg Brozek hgt
. eststo
. reg Brozek hgt_m
. eststo
. reg Brozek hgt_cm
. eststo
. esttab
(€H) @ (€)) “)
Brozek Brozek Brozek Brozek
(feet) (inches) (meters) (centimeters)
hgt_ft -2.263
(-1.41)
hgt -0.189
(-1.41)
hgt_m -7.423
(-1.41)
hgt_cm -0.0742
(-1.41)
_cons 32.17*** 32.17*** 32.17*** 32.17***
(3.44) (3.44) (3.44) (3.44)
N 252 252 252 252

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001
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As expected, the slope coefficients in (1) and (2) differ by a factor of 12, and those in Models (3)
and (4) differ by a factor of 100. And the intercepts are unaffected by the changes in scale of the
RHS variable.

And if we put the different height variables on the LHS, the slope and intercept coefficients will
reflect the differing units.

- qui: reg hgt_ft wgt

. eststo
- qui: reg hgt wgt
. eststo
- qui: reg hgt_m wgt
. eststo
- qui: reg hgt_cm wgt
. eststo
. esttab
€)) ) ©) @
hgt_ft hgt hgt_m hgt_cm
(feet) (inches) (meters) (centimeters)
wgt 0.00320*** 0.0384*** 0.000976*** 0.0976***
(5.12) (5.12) (5.12) (5.12)
_cons 5.273*** 63.27*** 1.607*** 160.7***
(46.54) (46.54) (46.54) (46.54)
N 252 252 252 252

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

As expected, the slope and intercept coefficients in (1) and (2) each differ by a factor of 12, and
further, those in Models (3) and (4) each also differ by a factor of 100.
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Appendix: A Simple Derivation of those OLS Coefficients

We want to min SSR = Y"[ 'y, — (b, +b;X, )]2 wrt b, and b,
Define 6 =y -b, -bX.
Then if we add and subtract ¢ inside the square brackets in the SSR expression we have:
SSR=Y[y,~5+5—(b, +bx)] =X [(v,~¥)+6-b(x -%)],
which can be simplified to
SSR=n&%+> (v, —¥) =28 D (v, = ¥) (% —X)+b2> " (x —X)’
=(n —1)[%52 +S, —2bS, +bfsxx}
which we want to minimize wrt 6 and b, .
Since 5% >0 for any b, and b, we minimize SSRs with § =y -b, —b X =0. So
b, =Y —b X ... (which should look very familiar by now!)

And to minimize the rest of the expression that varies with b,, [—ZblsXy + bfsxx] justuse a

FOC:
dSSR .
W=(n—1)[—28Xy +2bS, |=0,0rb =S, /S,.

OLS coefficients!

26



