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The SLR (Simple Linear Regression) Model Setup 

1. You have a dataset consisting of n observations of two variables ( , )x y :  
( ){ }, 1, 2,...i ix y i n= . 

2. You believe that except for random noise in the data, there is a linear relationship between 
the x’s and the y’s:  0 1i iy xβ β+ …  and are interested in estimating the unknown 
parameters 0β  (the y intercept) and 1β  (the slope). 

3. If there was no noise in the data, then since 0 1i iy xβ β= +  for all observations, we could 
easily determine 0β  and 1β .1  But typically, the relationship is not exactly linear in the 
observed data. 

4. Call your parameter estimates 0β̂  and 1̂β , and your predicted y values 0 1
ˆ ˆˆi iy xβ β= +  .  

a. I will try to be consistent and always use ' sβ  for true parameter values… and ˆ ' sβ  for 
estimates of the ' sβ . 

5. We call the difference between the observed iy  and the predicted value 0 1
ˆ ˆˆi iy xβ β= +  the 

residual, ˆiu :  ( )0 1
ˆ ˆˆ ˆi i i i iu y y y xβ β= − = − + . 

6. One measure of how well the predicteds fit the 
actuals will be the SSRs, the Sum of the Squared 
Residuals:  ( )22ˆ ˆi i iSSR u y y= = −∑ ∑ . 

a. We square the residuals so that positive and negative residuals won’t offset one another 
when we add them up. 

                                                 
1 1β  is just the slope of the line connecting any two datapoints, and 0 1i iy xβ β= − , for any datapoint. 
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7. Here’s an example (negative residuals for #1 and #2; positive residuals for #3 and #4): 

    
8. In this example, we have: 

a. pred(icteds) computed using an intercept = .03 and slope = 1… and SSR=.0520 

b. In Ordinary Least Squares (OLS) regressions, the goal 
is to find the coefficient values that minimize the sum 
of the squared residuals, or SSRs…  which is why we 
call the estimated coefficients least squares estimates.  

9. Here are two more examples: 

a. pred1:  intercept = -.07, slope = 2, and SSR=.0386  (solid line below) 

b. pred2:  intercept = .29, slope = 1, and SSR=.0507  (dashed line below) 

c. Note that both predicted values are above data point #2 and below data point #3… and on 
opposite sides of data points #1 and #3. 

 

 

intercept -0.07 0.29
slope 2 1

predicteds
id x y pred1 pred2

1 0.19 0.44 0.31 0.48
2 0.29 0.41 0.51 0.58
3 0.41 0.81 0.75 0.7
4 0.54 0.92 1.01 0.83

residuals
1 0.13       (0.04)      
2 (0.10)      (0.17)      
3 0.06       0.11       
4 (0.09)      0.09       

residualŝ 2
1 0.0169    0.0016    
2 0.0100    0.0289    
3 0.0036    0.0121    
4 0.0081    0.0081    

SSRs
0.0386   0.0507   
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10. Perhaps we can do better in terms of minimizing SSRs, but at the moment, the pred1 
coefficients do the best job of fitting the data, with SSR=.0386; pred2 is second best with 
SSR = .0507, and pred in the first chart provides the poorest fit to the data, with SSR =  .052. 

11. Take Away:  The fit of the predicteds to the actuals will vary as we change the intercept and 
slope coefficients.  The goal is to find the coefficient values that provide in some sense the 
best fit.  One way of measuring the fit for each set of coefficients is to look at SSRs the sum 
of the squared residuals.  The OLS coefficients will provide the best fit of predicteds to 
actuals, in the sense of having the smallest possible SSR.  And that's why we call the 
estimation technique least squares… or more formally, Ordinary Least Squares. 

 
OLS (Ordinary Least Squares) Estimation:  FOCs and SOCs 

12. OLS:  Minimize Sum (of the) Squared Residuals (SSRs) 

a. The challenge in Ordinary Least Squares is to find the slope coefficient ( 1b ) and intercept 
coefficient ( 0b ) that together minimize Sum Squared Residuals (SSR), defined by: 

( )( )22
0 1( )i i iSSR u y b b x= = − +∑ ∑ . 

b. To do this, and as you saw 
in Getting Started II, we'll 
use First Order Conditions 
(FOCs) to identify least 
squares coefficient 
candidates, and Second 
Order Conditions (SOCs) 
to ensure that we have 
indeed minimized SSRs. 

c. Before turning to the math, 
here's an example of SSR 
contours for different 
values of b0 and b1.   In 
the Figure, SSRs are 
minimized when 0 0b =  
and 1 .5b = : 

 

  



OLS/SLR Analytics: Estimating Parameters 
 

4 

13. OLS I:  Working with standardized variables 

a. Assume that the x's and y's have been standardized to have mean zero and variance one, 
so that 0x y= = , 1x xx y yyS S S S= = = = , and xy xyS ρ=  . 

b. FOCs:  Focus on the FOCs for our minimization problem:   

minimize ( )( )2
0 1i iSSR y b b x= − +∑  with respect to (wrt) 0 1b and b . 

i. FOC 1:  Differentiating wrt 0b :  

0 1 0 1
0

2 ( ) 2 2 2 0i i
SSR y b b x ny nb b nx
b

∂
= − − − ⇒ − + + =

∂ ∑ , and so /( 1)n −

0 1
0

0SSR b y b x
b

∂
= ⇔ = −

∂
 

1. Checking a SOC:  
2

2
0

2 0SSR n
b

∂
= >

∂
, so we have a minimum at 0b . 

ii. Since 0x y= = , *
0 1 0b y b x= − =  is our best estimate for the intercept parameter.2 

iii. And so our minimization problem becomes: 

minimize ( )2
1i iSSR y b x= −∑  wrt 1b . 

iv. FOC 2:  Differentiating ( )2
1i iSSR y b x= −∑  wrt 1b :  

( )1
1

2 0i i i
dSSR x y b x
db

= − − =∑ .  So ( ) 2
1i i ix y b x=∑ ∑ , and 

( )
1 2

i i

i

x y
b

x
= ∑
∑

. 

1. Checking a SOC:  
2

2
2
0

2 0i
d SSR x

db
= >∑ , so we do indeed have a minimum at 1b . 

v. Since x and y are standardized, we have several equivalent expressions for the 
estimated slope coefficient: 

( ) ( )*
1 2 2

/ ( 1)

/ ( 1)
i i xyi i

xy
xxi i

x y n Sx y
b

Sx x n
ρ

  − = = = =
  − 

∑∑
∑ ∑

. 

c. Accordingly, the predicted values generated by OLS with standardized variables are 
defined by:  ˆi xy iy xρ= .  Now you know why it is sometimes said that OLS parameter 
estimates capture the correlations between variables.  And now you perhaps better 
understand the results in qFlip01! 

  

                                                 
2 The * indicates that the particular coefficient value minimizes SSRs. 
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14. OLS II:  … more generally … 

a. Now, turn to the more general case in which the x's and y's have not been standardized. 

b. Focusing on the FOCs for our minimization problem:   

 minimize ( )( )2
0 1i iSSR y b b x= − +∑  with respect to (wrt) 0 1b and b . 

 

i. FOC 1:  Differentiating wrt 0b :  

0 1 0 1
0

2 ( ) 2 2 2 0i i
SSR y b b x ny nb b nx
b

∂
= − − − ⇒ − + + =

∂ ∑ , and so 

0 1
0

0SSR b y b x
b

∂
= ⇔ = −

∂
 

1. So as before, the intercept estimate will be equal to the mean of the y's less the 
slope estimate times the mean of the 
x's.  You don’t yet know what the 
intercept and slope estimates are… 
but you know that for FOC 1 to be 
satisfied, they ( )0 1b and b  have to 
satisfy this relationship. 

2. The following Figure is illustrative… 
and assumes 0 0y and x> > .  FOC 
1 implies that the 0 1b and b  that 
minimize SSRs must lie on the 
straight line defined by 0 1b y b x= − .  
To find the exact SSR minimizing 
values of 0 1b and b , we turn to FOC 
2. 

ii. Since ( ) 2
0 1i iSSR y b b x = − + ∑  and 0 1b y b x= − , we now want to minimize 

( ) ( ) ( )2 2
1 1 1i i i iSSR y y b x b x y y b x x   = − − + = − − −   ∑ ∑ , wrt 1b . 

iii. FOC 2:  Differentiating wrt 1b :  

( ) ( ) ( )1
1

2 0i i i
dSSR x x y y b x x
db

 = − − − − − = ∑ .  So 

( )( ) ( )2
1i i ix x y y b x x− − = −∑ ∑ , and 1 2

( )( )
( )

i i

i

x x y y
b

x x
− −

=
−

∑
∑

. 
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c. The SOCs are more complicated and will be skipped, but rest assured that they are 
satisfied and the FOCs identify the global minimum of the SSRs.  For some intuition:  the 
two second derivatives (wrt 0b  and wrt 1b ) are both positive, suggesting that we may 
indeed have identified a minimum with the FOCs:   

i. Differentiating FOC 1:  
2

2
0

2 0SSR n
b

∂
= >

∂
, and  

ii. Differentiating FOC 2:  
2

2
2

1

2( 1) ( ) 0i
d SSR x x

db
= − − − >∑ . 

 
OLS and Sample Statistics :  Interpreting the OLS coefficients 

15. The OLS estimated coefficients 

a. For the given sample, the OLS estimates of the unknown intercept and slope parameters 
are: 

1 2

( )( )ˆ
( )

i i

i

x x y y
x x

β
− −

=
−

∑
∑

, and 0 1
ˆ ˆy xβ β= −  

As previously mentioned, we use “hats” to denote estimates. 

b. Since ( ) 0ix x− =∑ , ( )( ) ( ) ( )i i i i ix x y y x x y y x x− − = − − −∑ ∑ ∑  ( )i ix x y= −∑ … 
as discussed in the Sample Statistics section of Getting Started II.  Accordingly, we have 
an alternative expression for the estimated slope coefficient which will prove useful later:   

1 2

( )ˆ
( )

i i

i

x x y
x x

β
−

=
−

∑
∑

. 

c. 0β̂  and the sample means 

i. Since 0 1
ˆ ˆy xβ β= − , the estimated intercept is the sample mean of the y’s minus 1̂β  

times the sample mean of the x’s. 

ii. The estimate of the intercept assures that the average predicted value, 0 1
ˆ ˆ xβ β+ , is the 

same as the average observed value y , since ( )0 1 1 1
ˆ ˆ ˆ ˆx y x x yβ β β β+ = − + = . 

d. 1̂β  and the sample variances, covariance and correlation 

i. If we divide the numerator and denominator of the 1̂β  equation by (n-1), then using 
the sample statistics notation from Getting Started II, we have:  

1 2 2

( )( ) / ( 1)( )( )ˆ
( ) ( ) / ( 1)

i i xyi i

i xxi

x x y y n Sx x y y
x x Sx x n

β
 − − −− −  = = =

−  − − 

∑∑
∑ ∑

. 
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ii. Accordingly, the OLS slope estimator is just the ratio of the sample covariance of x’s 
and y’s and the sample variance of the x’s:   

1
( , )ˆ
( )

Sample Covariance x y
Sample Variance x

β =  

iii. Recall that the sample correlation is defined by:  xy
xy

x y

S
S S

ρ = , where xS  and yS  are 

the square roots of the respective sample variances.   

iv. Since xy xy x
xy

x y xx y

S S S
S S S S

ρ = = , we have:  1̂
xy y

xy
xx x

S S
S S

β ρ= = . 

e. And so once the slope coefficient is determined, the SSR minimizing intercept coefficient 
follows from FOC 1: 

 
 

f. OLS/SLR Slope Estimate ~ Correlation:  So the regression slope coefficient is the 
product of the sample correlation between the x’s and y’s and the ratio of the two 
estimated standard deviations: 

1
( )ˆ ( , )
( )

Sample StdDev ySample Correlation x y
Sample StdDev x

β =  

i. If the two sample standard deviations are the same then the estimated slope 
coefficient will be the estimated correlation between the x’s and y’s.  You saw this in 
the first instance when we considered SLR models with standardized variables, with 

1x yS S= = . 

ii. Indeed it is not unusual to think of the OLS slope estimate 1̂β  as reflecting the 

correlation between the x's and y's.  Since 1̂
y

xy
x

S
S

β ρ=  the sign of the estimated slope 

coefficient, 1̂β , is the same as the sign of the correlation between x and y, xyρ  
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(assuming that the ratio of standard deviations positive, which it always is unless one 
of the standard deviations is zero). 

 

1̂β :  A Weighted Average of Slopes 

16. The estimated slope coefficient is a weighted 
average of slopes of lines joining the various 
data points to the sample means ( , )x y : 

1
( )ˆ
( )

i
i i ii i

i

y yw w slope
x x

β
 −

= = − 
∑ ∑ . 

a. This result holds because 

1

( )( )ˆ
( 1)

i ii

xx

x x y y
n S

β
− −

=
−

∑

2( ) ( )
( 1) ( )

i i
i

xx i

x x y y
n S x x

   − −
=    − −   
∑

( )
( )

i
i i ii i

i

y yw w slope
x x

 −
= = − 
∑ ∑ , where 

( )
( )

i
i

i

y yslope
x x
−

=
−

is the slope of the line connecting ( , )i ix y  to ( , )x y , and 

2 2

2

( ) ( )
( 1) ( )

i i
i

xx jj

x x x xw
n S x x
− −

= =
− −∑

. 

b. By construction, the iw 's are non-negative weights, which sum to 1. 

c. Accordingly, in the equation for 1̂β , the slopes are weighted proportionally to 2( )ix x− ,  
the square of the various x-distances from the x mean. 

d. In this interpretation, note that the data points are not weighted equally (that would be 
another estimator… but not OLS).  Those that are farther away from x  (in the x 
dimension) get greater weight, and that weight increases with the square of the x-distance 
from x . 
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e. Here's an example:  The blue dots are the data points; the horizontal and vertical black 
lines are at the sample means; the blue lines are the lines connecting the data points to the 
sample means; and the think black line shows the predicted Brozek values given the slope 
and intercept estimates. 

i. Note that in the weighted averaging of slopes, one data point, (125.75, 1.90), gets two 
thirds of the weight, and when combined with (223, 27.50), those two data points get 
95% of the weight.  So even though there are four data points, the slope estimate is 
being largely driven by just two of the data points. 
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OLS Predictions, Residuals and SRFs 

17. OLS coefficient estimates will generate predicted values, ˆ 'y s , and residuals, ˆ 'u s : 

a. Predicted values:  For given ix , the predicted iy  value given the estimated coefficients 

is:  0 1
ˆ ˆˆi iy xβ β= +   (recall again that we use “hats” for predicted or estimated values). 

b. Sample Regression Function (SRF):  The predicted values from the estimated equation, 

0 1
ˆ ˆŷ xβ β= + , comprise the Sample Regression Function.   

c. Residuals:  And for the given predicted  iy  value, the residual, ˆiu , is as above the 

difference between the actual and predicted values:  ( )0 1
ˆ ˆˆ ˆi i i i iu y y y xβ β= − = − + . 

18. To illustrate predicteds (from the SRF) and residuals, we turn to the bodyfat dataset and a 
regression of Brozek on BMI, with an SRF defined by:  20.41 1 55  .  brozek bmi= − + . 

a. The following chart on the left illustrates the relationship between the SRF (predicteds) 
and the actuals (the actual ( ),i ix y data points). 

 

  
 

b. And on the right you see a graph of the residuals from the analysis. 

i. You shouldn't be surprised to see the SRF slice through the dataset… since we 
estimated the coefficients by minimizing SSRs. 

ii. And you should not be surprised to see the residuals evenly dispersed above and 
below 0, since by construction, and as you'll see below, the residuals will have sample 
mean 0. 

iii. But what about that rogue residual in the lower right corner of the Figure?  Need to 
check on that! 

19. SRFs will depend on the actual sample used to estimate the slope and intercept parameters…  
different samples will typically lead to different parameter estimates and accordingly, 
different SRFs.  But there are some consistent outcomes with SRFs: 

-2
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a. The SRF always passes through the sample means, ( , )x y . 

i. 0 1
ˆ ˆy xβ β= −  assures that the SRF passes through ( , )x y  since as previously 

discussed, the value of the SRF at x  is ( )0 1 1 1
ˆ ˆ ˆ ˆx y x x yβ β β β+ = − + =  

b. ˆyy yxρ ρ= :  SampleCorrelation(predicteds, actuals) = SampleCorrelation(x's, y's) 

i. The sample correlation between the actuals and predicted values is the same as the 
sample correlation between the actuals and the x’s:  ˆyy yxρ ρ= .  Proof below.3 

 
… Properties of OLS/SLR Residuals 

20. Recall that the residuals are defined by:  ( )0 1
ˆ ˆˆ ˆi i i i iu y y y xβ β= − = − + .  We have the 

following properties of residuals: 

21. Average residuals:  The average residual is zero:  ( )0 1
1 ˆ ˆˆ 0iu y x
n

β β= − + =∑  

22. Correlation I:  The sample correlation between the 'ix s  and the ˆ 'iu s  is zero, since 

( )ˆ 0i iu x x− =∑ .  Proof below.4  

23. Correlation II:  The sample correlation 
between the predicted values ( ˆiy  s) and 
the residuals ( ˆiu s) is zero.  Proof below.5  

24. Decomposition:  And so OLS essentially decomposes actual 'iy s  s into two uncorrelated 
parts, predicteds and residuals:  ˆ ˆi i iy y u= +  and ˆ ˆˆ 0yuρ = .  This result will prove useful later.  

 

                                                 

3 Since ˆ
ˆ

ˆ

yy
yy

y y

S
S S

ρ = , and since 
0 1 0

ˆ ˆ ˆˆ 1 1( )
ˆ ˆ

yy yx yxy x yS S S S S
β β β

β β
+

= = + = , and since 2
ˆˆ 1̂yy xxS Sβ= , we have:

ˆ 1
ˆ

ˆ 1

ˆ
ˆ

yy yx yx
yy yx

y y y xy x

S S S
S S S SS S

β
ρ ρ

β
= = = = . 

4 ( ) ( )( )ˆ ˆi i i i iu x x y y x x− = − −∑ ∑ ( )( )0 1
ˆ ˆ(i i iy x x xβ β= − + −∑ .  But since 0 1

ˆ ˆy xβ β= − , the last 

expression is ( )( )1 1
ˆ ˆ(i i iy y x x x xβ β− − + −∑ ( )( )1̂( ) ( )i i iy y x x x xβ= − − − −∑  

( ) 2
1̂( ) ( ) 0i i iy y x x x xβ= − − − − =∑ ∑  given the definition of 1̂β . 

5 ( )( ) ( ) ( )( )1̂ˆ ˆ ˆ ˆ ˆ ˆ ˆi i i i i i iu u y y u y y y y x xβ− − = − = − −∑ ∑ ∑ , which is zero (see previous proof). 
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25. Since the predicted and residuals have zero covariance, the variance of their sum is the sum 
of their variance:  ˆˆ ˆ ˆyy yy uuS S S= + .   

Var(actuals) = Var(predicteds) + Var(residuals) 
 

26. Multiplying through by (n-1), we also have:  

( ) ( )2 2 2ˆ ˆi i iy y y y u− = − +∑ ∑ ∑ ,  

since the mean of the predicted y's is the mean of the actuals, 1 ˆiy y
n

=∑ , and since the 

residuals have mean 0, 1 ˆ 0iu
n

=∑ .  This result will prove especially useful later.  
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Units of Measurement and Estimated Coefficients 

27. It is of so tempting to see large estimated coefficients and to rejoice in thinking that you've 
found a large effect… or to see a small estimated coefficient and to fall into the depths of 
depression thinking that you've found no real effect at all.  And in both cases, you would be 
seriously in error… falling into the the trap of thinking that the magnitudes of the estimated 
coefficients tell you something meaningful.  They do not… as they are sensitive to units of 
measurement. 

28. If you change units of measurement, 
you will change OLS estimated 
coefficients… or put differently, you 
can make the magnitudes of those 
coefficients as large or small as you 
want just by changing units of 
measurement.   

29. Here's why: 

a. Consider the standard SLR model in which you've regressed y on x.  You know from 
above that the estimated OLS slope and intercept coefficients will be defined by: 

1̂
xy y

xy
xx x

S S
S S

β ρ= =  and 0 1
ˆ ˆy xβ β= − . 

b. Now suppose that you rescale x to create a new variable v, xv xλ= , where 0xλ >  so that 
you preserve the sign of the variable.  For example:   

1. Perhaps x was originally height measured in feet… 
and now v is height measured in inches.  Then 12xλ =  , and 

12v x= .   

ii. Or maybe x was originally volume measured in 
gallons… and now v is volume measured in quarts, so that 

4xλ =  , and 4v x= .   

You get the idea. 

c. This rescaling will impact the sample mean and standard deviation:   

xv xλ=  and v x xS Sλ= . 

d. Suppose you also rescale the y's as well:  yw yλ= .  This will similarly impact the mean 
and standard deviation: yw yλ=  and w y yS Sλ= .   

e. But recall that rescaling both the x's and the y's will not impact the sample correlations, so 
that: vw xyρ ρ= .  This will proves to be an important feature. 
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f. Now if you regress the rescaled variables on one another (you regress w on v), the new 
OLS coefficient estimates will be defined by: 

1̂
y y y y yw

vw xy xy
v x x x x x

S SS
slope

S S S
λ λ λ

ρ ρ ρ β
λ λ λ

= = = =  and  

( ) ( )1 1 0
ˆ ˆ ˆ_ y

y x y y
x

cons w slope v y x y x
λ

λ β λ λ β λ β
λ

 
= − = − = − = 

 
 

30. Accordingly: 

a. Changes in the units of measurement of the RHS x variable will proportionately impact 
the estimated slope coefficient… and have no impact on the estimated intercept.   In a 
sense, the estimated coefficient will unwind the rescaling of the variable.  In the previous 
examples: 

i. feet to inches:  x is 12 times larger, slope is 1/12th the size…. and slope*x is 
unchanged 

ii. gallons to quarts:  x is 4 times larger, slope is 1/4th the size…. and slope*x is 
unchanged 

b. Changes in the units of measurement of the LHS y variable will proportionately impact 
both the estimated slope and intercept coefficients. 

c. And if you rescale both variables, the impacts on the estimated slope and intercept 
coefficients will be some combination of the above.. 

31. To repeat:  The magnitudes of the estimated coefficients will be dependent on the units of 
measurement, and in that sense, will typically tell you little about the meaningfulness of the 
estimated effect.  There are exceptions, of course… but they are not the norm. 

32. Or put differently:  Don’t fall into the trap of thinking that the sizes/magnitudes of estimated 
coefficients tell you anything useful, as they are driven in part by the units of measurement.  
In contrast:  the sign of slope coefficient (which does not change with rescaling) does tell you 
the direction of the estimated effect.  So pay attention to signs… but not so much to 
magnitudes… unless you have specific reasons for thinking that the magnitudes are 
meaningful. 

33. But then, how do we assess meaningfulness? 
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Economic Significance (Meaningfulness):  Beta Regressions and Elasticities 

34. Once the unknown parameters have been estimated using OLS, the obvious question is:  
What do those estimates tell you?  Do they suggest that there is a meaningful relationship 
between changes in the x's and predicted changes in the y's?  Or maybe not?  How do you 
tell? 

35. Later, we will address this question from a statistical perspective, using the tools of statistical 
inference and the concept of statistical significance.  But for now, we focus on a more 
commonsensical approach to answering the question:  How (economically) meaningful is 
the estimated relationship?  Do you want to brag about it to the world?  Or will everyone just 
laugh at you, and tell you that what you've estimated is trivial, and of little consequence? 

36. Meaningfulness is definitely in the eye of the beholder.  Nonetheless, there are some 
systematic ways in which researchers tackle the question:  Beta Regressions and Elasticities 

 

Meaningfulness I:  Beta Regressions 
37. One way around the issue of sensitivity to units of measurement is to first standardize your 

variables before you run your regression.  By subtracting means and dividing by standard 
deviations, you will transform your variables into variables with mean zero and unit 
variances and standard deviations.  More importantly, your standardized variables will be 
insensitive to units of measurement… or put differently:  changes in units of measurement 
will have no impact on the standardized variables. 

38. More formally: 

a. Create the z's by standardizing the x's:  i
i

x

x x
z

S
−

=  . 

b. Suppose you rescale the x's as above:  xv xλ= … so xv xλ=  and v x xS Sλ= . 

c. Then the standardize v's will be defined by:  i x i x i
i

v x x x

v v x x x x
z

S S S
λ λ

λ
− − −

= = = . 

d. Changes in units of measurement will have no impact on the standardized variable… 
standardization negates the impact of any change in units of measurement. 

e. And so regressions run with standardized variables will be unaffected by changes in units 
of measurement. 

39. Beta regressions:  With beta regressions, we just regress the standardized y on the 
standardized x.  As you saw earlier in the semester, the OLS estimated intercept will be zero, 
since both standardized variables have mean zero, and the estimated slope coefficient will 
just be the sample correlation between the x's and y's (which is unaffected by rescaling).   

40. To run these in Stata, just add , beta to your reg command.  Here's an example, working with 
the bodyfat dataset: 
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. corr Brozek BMI 
 
             |   Brozek      BMI 
-------------+------------------ 
      Brozek |   1.0000 
         BMI |   0.7280   1.0000 
 
. reg Brozek BMI, beta 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    281.89 
       Model |  7991.50988         1  7991.50988   Prob > F        =    0.0000 
    Residual |  7087.50675       250   28.350027   R-squared       =    0.5300 
-------------+----------------------------------   Adj R-squared   =    0.5281 
       Total |  15079.0166       251  60.0757635   Root MSE        =    5.3245 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
         BMI |   1.546712   .0921238    16.79   0.000                 .7279942 
       _cons |  -20.40508   2.367227    -8.62   0.000                        . 
------------------------------------------------------------------------------ 
 

41. The reported Coef.'s are the usual OLS coefficients from regressing y on x.  The coefficients 
for the Beta Regression are on the far right of the results table…. and as expected, the 
estimated intercept is 0 and the estimated slope is just the sample correlation between Brozek 
and BMI. 

42. There are two interpretations of the estimated beta regression slope coefficient: 

a. As mentioned above, the beta regression slope coefficient will be the sample correlation 
between x and y, which is invariant with respect to changes in units of measurement. 

b. The results above say that a one standard deviation increase in BMI is on average 
associated with a .73 standard deviation increase in Brozek.  So the beta regression slope 
coefficient captures effects measured in standard deviation units.   And those effects will 
not vary with units of measurement. 

43. Since the slope estimates in Beta regressions are correlations, they are bounded between -1 
and +1… and we have a sense of their magnitude:  closer to zero, not so meaningful… and 
closer to -1 or +1, and we'd say that there was a meaningful relationship.  For the .73 
magnitude above, most would say that the estimated relationship was meaningful… and 
surely no one would laugh at that claim.  Though never forget that meaningfulness is in the 
eye of the beholder. 
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Meaningfulness II:  Elasticities 
44. In economics and mathematics, we typically use derivatives to assess relationships between 

changes in one variable, say, x, and changes in another, say y.  But derivatives are sensitive 
to units of measurement… and so to circumvent this problem, economists often turn to 
elasticities, which provide a unit free measure of responsiveness (of the predicted ŷ 's to 
changes in the x's):   

ˆ%
%

yelasticity
x

∆
=

∆
  … the elasticity captures the estimated relationship between 

percentage changes in x and percentage changes in the predicted values. 

45. Using the SRF to estimate relationships:  0 1
ˆ ˆŷ xβ β= + . 

a. Derivative:  The estimated average marginal relationship between x and ŷ  :  1̂ˆd y
dx

β= .  

Note that you can read the derivative right off the regression output (it's the estimated 
slope coefficient, 1̂β ). 

b. (Point) Elasticity:  1̂ˆ
ˆ ˆ
x d xy
y dx y

β=   evaluated at 0 1
ˆ ˆˆ( , ) ( , )x y x xβ β= + , somewhere along 

the SRF…. Evaluate where?  Your call! 

i. Where you evaluate the elasticity on the SRF is often arbitrary… but be sure to 
evaluate the elasticity at some point on the SRF.  You will typically get different 
elasticities depending on where along the SRF you estimate the elasticity… but 
maybe they don’t change much as you move along the SRF. 

ii. We often evaluate the elasticity at the means (which are by definition in the middle 

of the dataset):  1̂
x
y

β  

1. Recall that the mean of the predicted values will be y … and that the SRF passes 
through 0 1

ˆ ˆ( , ) ( , )x y x xβ β= + . 

46. You can use the margins command in Stata to generate the elasticities.  Let's return to the 
previous example and regress Brozek on BMI.  To generate the elasticity, we first run the 
regression, and then follow that with the margins command: 

 
. reg Brozek BMI 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    281.89 
       Model |  7991.50988         1  7991.50988   Prob > F        =    0.0000 
    Residual |  7087.50675       250   28.350027   R-squared       =    0.5300 
-------------+----------------------------------   Adj R-squared   =    0.5281 
       Total |  15079.0166       251  60.0757635   Root MSE        =    5.3245 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         BMI |   1.546712   .0921238    16.79   0.000     1.365275     1.72815 
       _cons |  -20.40508   2.367227    -8.62   0.000    -25.06733   -15.74283 
------------------------------------------------------------------------------ 
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. margins, eyex(_all) atmeans 
 
Conditional marginal effects                    Number of obs     =        252 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
ey/ex w.r.t. : BMI 
at           : BMI             =     25.4369 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      ey/ex   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         BMI |    2.07744   .1290888    16.09   0.000     1.823199     2.33168 
------------------------------------------------------------------------------ 

47. While you can evaluate the elasticity (eyex in the syntax) at different points, the atmeans 
options will generate the elasticity at the means…  which is 2.08.  Most would say that an 
elasticity of that magnitude (suggesting that a 10% increase in BMI s associated with a 21% 
increase in predicted Brozek) is highly meaningful.   

48. While there's no official border separating elasticities for meaningful effects from those that 
are not so meaningful, I think it's fair to say that everyone agrees that elasticities above 1 
(and even .5) in magnitude suggest a meaningful effect, and those below .05 might suggest a 
not so meaningful estimated relationship.  If I had to pick a zone of indifference, I'd say that 
it might be in the neighborhood of .1 … but this is clearly a judgement call. 

49. Often elasticities are so small or so large, no one needs to worry about picking a dividing line 
for meaningfulness.  But unfortunately, that is not always the case… in which case 
reasonable people may disagree. 

 

Beta Regressions v. Elasticities:   
50. In our bodyfat example, the beta regression and elasticities approaches both suggest that 

there is a highly meaningful and positive relationship between BMI and Brozek.  I should 
warn you though that while these two approaches almost always lead to consistent 
interpretations, that won’t always happen.   

51. In that case, you can throw your hands in the air… or maybe just fall back on the eyeball and 
laughability tests.  Do your critics laugh at you when you claim to have found a meaningful 
effect?  Or maybe they agree with you, even though no one agrees on exactly how to define 
meaningfulness. 
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Examples in Excel and Stata 

 
Let’s first do this in Excel. 
Open the bodyfat dataset in Excel.  Generate the x-y scatterplot of Brozek v. wgt, and “add 
trendline”.  You should see something like: 

 

 
 

Trendline fits a straight line to the data… and 
that straight line is in fact generated by the OLS 
intercept and slope coefficients!   

For Brozek and wgt, compute sample means, variances, standard deviations, as well as the  
covariance and correlation, and apply the various formulae for the OLS slope and intercept 
estimates.  You should get something like: 

 

 
 
So who knew?  The Excel Trendline is generated by OLS! 
 

Case wgt Brozek wgt-wbar Brozek-Bbar product
1 154.25 12.6 (24.67)        (6.34)           156.40         
2 173.25 6.9 (5.67)          (12.04)          68.31          
3 154 24.6 (24.92)        5.66            (141.11)        
4 184.75 10.9 5.83           (8.04)           (46.83)         
5 184.25 27.8 5.33           8.86            47.19          
6 210.25 20.6 31.33         1.66            52.05          
7 181 19 2.08           0.06            0.13            
8 176 12.8 (2.92)          (6.14)           17.95          
9 191 5.1 12.08         (13.84)          (167.11)        

10 198.25 12 19.33         (6.94)           (134.09)        
11 186.25 7.5 7.33           (11.44)          (83.79)         
12 216 8.5 37.08         (10.44)          (387.01)        
13 180.5 20.5 1.58           1.56            2.46            
14 205.25 20.8 26.33         1.86            49.01          
15 187.75 21.7 8.83           2.76            24.37          
16 162.75 20.5 (16.17)        1.56            (25.26)         

y = 0.1617x - 9.9952
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Brozek

Sample Cov Sample Corr
863.72       60.08           139.67         0.6132         Sxy/Sxx 0.1617     

StDevs 29.39         7.75            corr*(Sy/Sy) 0.1617     

Sum
Means 178.924 18.938 216,794.40 15,079.02    35,057.55    Bbar-b1*wbar (9.9952)                

Case wgt Brozek wgt-wbar Brozek-Bbar product
1 154.25 12.6 (24.67)        (6.34)           156.40         
2 173.25 6.9 (5.67)          (12.04)          68.31          
3 154 24.6 (24.92)        5.66            (141.11)        
4 184.75 10.9 5.83           (8.04)           (46.83)         
5 184.25 27.8 5.33           8.86            47.19          

Sum Squares

Sample Variances Slope estimates

Intercept estimate
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Running regressions in Excel 
You can also run the OLS regression in Excel using Data/Data Analysis/Regression (you may 
have to load the Data Analysis Tool-Pak (go to Options/Add-Ins): 

 

   
 

 

 
Same OLS slope and intercept! 
  

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.61316      
R Square 0.37596      
Adjusted R Square 0.37346      
Standard Error 6.13511      
Observations 252

ANOVA
df SS MS F Significance F

Regression 1 5,669.11           5,669.11 150.62         2.05905E-27
Residual 250 9,409.90           37.64      
Total 251 15,079.02         

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept (9.9952)       2.3891              (4.18)      3.97276E-05 (14.7004)         (5.2899)     
wgt 0.1617        0.0132              12.27      2.05905E-27 0.1358           0.1877      
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Now for Stata. 
 
. bcuse bodyfat 
 
Contains data from http://fmwww.bc.edu/ec-p/data/wooldridge/bodyfat.dta 
  obs:           252                           
 vars:            24                           
 size:        40,068                           
------------------------------------------------------------------------------ 
              storage   display    value 
variable name   type    format     label      variable label 
------------------------------------------------------------------------------ 
Case            int     %10.0g                Case 
Brozek          double  %10.0g                457/density - 414.2 
wgt             double  %10.0g                weight (lbs) 
------------------------------------------------------------------------------ 
Sorted by:  
 
. reg Brozek wgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    150.62 
       Model |  5669.11335         1  5669.11335   Prob > F        =    0.0000 
    Residual |  9409.90327       250  37.6396131   R-squared       =    0.3760 
-------------+----------------------------------   Adj R-squared   =    0.3735 
       Total |  15079.0166       251  60.0757635   Root MSE        =    6.1351 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wgt |   .1617088   .0131765    12.27   0.000     .1357578    .1876598 
       _cons |  -9.995151   2.389056    -4.18   0.000    -14.70039   -5.289908 
------------------------------------------------------------------------------ 
 
. predict bhat 
. scatter bhat Brozek wgt 
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Use the summarize, correlation and display commands to generate the OLS slope and intercept 
estimates: 
 
. summ Brozek wgt 
 
    Variable |        Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------- 
      Brozek |        252    18.93849    7.750856          0       45.1 
         wgt |        252    178.9244    29.38916      118.5     363.15 
 
. corr Brozek wgt, covar 
 
             |   Brozek      wgt 
-------------+------------------ 
      Brozek |  60.0758 
         wgt |  139.672  863.723 
 

slope coefficient 1:  ratio of sample covariance to sample variance 
 
. di 139.672 / 863.723 
.16170925 
 
intercept estimate: 
 
. di 18.93849 - .16170925 *  178.9244 
-9.9952405 
 
. corr Brozek wgt 
 
             |   Brozek      wgt 
-------------+------------------ 
      Brozek |   1.0000 
         wgt |   0.6132   1.0000 
 

slope coefficient 2:  (sample corr) (ratio of sample standard deviations) 
 
. di 0.6132 * 7.750856 / 29.38916 
.16172034 
 

 
Verify that the correlation of Brozek with wgt is the same as the correlation of Brozek with bhat: 
 
. corr Brozek bhat wgt 
 
             |   Brozek     bhat      wgt 
-------------+--------------------------- 
      Brozek |   1.0000 
        bhat |   0.6132   1.0000 
         wgt |   0.6132   1.0000   1.0000 
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Capture the residuals and verify that they are uncorrelated with the predicteds (bhats) and as 
well with the explanatory variable (wgt) 
 
. predict resids, res 
 
. corr bhat wgt resids 
 
             |     bhat      wgt   resids 
-------------+--------------------------- 
        bhat |   1.0000 
         wgt |   1.0000   1.0000 
      resids |  -0.0000  -0.0000   1.0000 
 
 

Elasticity at the means.   
 
Evaluate the elasticity associated with the estimated OLS coefficients: 
 
. di .1617088*178.9244/ 18.93849 
1.5277696 
 

 
Or just run the margins command right after the reg command 
 
. reg Brozek wgt 
. margins, eyex(_all) atmeans 
 
Conditional marginal effects                    Number of obs     =        252 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
ey/ex w.r.t. : wgt 
at           : wgt             =    178.9244 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      ey/ex   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wgt |   1.527769   .1283313    11.90   0.000     1.275021    1.780517 
------------------------------------------------------------------------------ 
 
 

And how about a Beta Regression? 
 
.  reg Brozek wgt, beta 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    150.62 
       Model |  5669.11335         1  5669.11335   Prob > F        =    0.0000 
    Residual |  9409.90327       250  37.6396131   R-squared       =    0.3760 
-------------+----------------------------------   Adj R-squared   =    0.3735 
       Total |  15079.0166       251  60.0757635   Root MSE        =    6.1351 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
         wgt |   .1617088   .0131765    12.27   0.000                 .6131561 
       _cons |  -9.995151   2.389056    -4.18   0.000                        . 
------------------------------------------------------------------------------ 
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As you saw before, the beta regression slope coefficient is just the correlation between Brozek 
and wgt.  The following shows that the Beta regression is as advertised… it's what you get when 
you first standardize your variables before running OLS.  You'll see that you can use use egen 
and the std(.) function to easily standardize your variables: 
 
. egen zBrozek=std(Brozek) 
. egen zwgt=std(wgt) 
. reg zBrozek zwgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    150.62 
       Model |  94.3660642         1  94.3660642   Prob > F        =    0.0000 
    Residual |  156.633936       250  .626535743   R-squared       =    0.3760 
-------------+----------------------------------   Adj R-squared   =    0.3735 
       Total |         251       251  .999999999   Root MSE        =    .79154 
 
------------------------------------------------------------------------------ 
     zBrozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        zwgt |   .6131561   .0499616    12.27   0.000     .5147569    .7115553 
       _cons |  -1.39e-09   .0498623    -0.00   1.000    -.0982038    .0982038 
------------------------------------------------------------------------------ 
 

Finally: About that sensitivity to scale…  Here are some regression results, with height in feet, 
inches, meters and centimeters (notice the use of eststo and esttab to compile the results). 
 
. gen hgt_ft = hgt/12 
. gen hgt_cm = hgt_m*100 
. reg Brozek hgt_ft 
. eststo 
. reg Brozek hgt 
. eststo 
. reg Brozek hgt_m 
. eststo 
. reg Brozek hgt_cm 
. eststo 
. esttab 
 
                      (1)             (2)             (3)             (4)    
                   Brozek          Brozek          Brozek          Brozek    
                   (feet)        (inches)         (meters)     (centimeters) 
---------------------------------------------------------------------------- 
hgt_ft             -2.263                                                    
                  (-1.41)                                                    
 
hgt                                -0.189                                    
                                  (-1.41)                                    
 
hgt_m                                              -7.423                    
                                                  (-1.41)                    
 
hgt_cm                                                            -0.0742    
                                                                  (-1.41)    
 
_cons               32.17***        32.17***        32.17***        32.17*** 
                   (3.44)          (3.44)          (3.44)          (3.44)    
---------------------------------------------------------------------------- 
N                     252             252             252             252    
---------------------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
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As expected, the slope coefficients in (1) and (2) differ by a factor of 12, and those in Models (3) 
and (4) differ by a factor of 100.  And the intercepts are unaffected by the changes in scale of the 
RHS variable. 

And if we put the different height variables on the LHS, the slope and intercept coefficients will 
reflect the differing units. 
 
. qui: reg hgt_ft wgt 
. eststo 
. qui: reg hgt wgt 
. eststo 
. qui: reg hgt_m wgt 
. eststo 
. qui: reg hgt_cm  wgt 
. eststo 
. esttab 
 
---------------------------------------------------------------------------- 
                      (1)             (2)             (3)             (4)    
                   hgt_ft             hgt           hgt_m          hgt_cm    
                   (feet)        (inches)         (meters)     (centimeters) 
---------------------------------------------------------------------------- 
wgt               0.00320***       0.0384***     0.000976***       0.0976*** 
                   (5.12)          (5.12)          (5.12)          (5.12)    
 
_cons               5.273***        63.27***        1.607***        160.7*** 
                  (46.54)         (46.54)         (46.54)         (46.54)    
---------------------------------------------------------------------------- 
N                     252             252             252             252    
---------------------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

As expected, the slope and intercept coefficients in (1) and (2) each differ by a factor of 12, and 
further, those in Models (3) and (4) each also differ by a factor of 100. 
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Appendix:  A Simple Derivation of those OLS Coefficients 

 

We want to min ( ) 2
0 1i iSSR y b b x = − + ∑  wrt 0 1b and b .   

Define 0 1y b b xδ = − − .   

Then if we add and subtract δ  inside the square brackets in the SSR expression we have: 

( ) ( ) ( )2 2
0 1 1i i i iSSR y b b x y y b x xδ δ δ   = − + − + = − + − −   ∑ ∑ , 

which can be simplified to  

( ) ( )( ) ( )2 22 2
1 12i i i iSSR n y y b y y x x b x xδ= + − − − − + −∑ ∑ ∑

2 2
1 1( 1) 2

1 yy xy xx
nn S b S b S

n
δ = − + − + − 

…  

which we want to minimize wrt 1and bδ . 

Since 2 0δ ≥  for any 0 1b and b , we minimize SSRs with 0 1 0y b b xδ = − − = .  So  
* *
0 1b y b x= − … (which should look very familiar by now!) 

And to minimize the rest of the expression that varies with 1b , 2
1 12 xy xxb S b S − +  , just use a 

FOC:   

1
1

( 1) 2 2 0xy xx
dSSR n S b S
db

 = − − + =  , or *
1 /xy xxb S S= .   

OLS coefficients! 
 


